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Multiple knockout analysis of genetic robustness in the 
yeast metabolic network
David Deutscher1, Isaac Meilijson2, Martin Kupiec3 & Eytan Ruppin1,4

Genetic robustness characterizes the constancy of the 
phenotype in face of heritable perturbations. Previous 
investigations have used comprehensive single and double 
gene knockouts to study gene essentiality and pairwise gene 
interactions in the yeast Saccharomyces cerevisiae. Here we 
conduct an in silico multiple knockout investigation of a flux 
balance analysis model of the yeast’s metabolic network. 
Cataloging gene sets that provide mutual functional backup, we 
identify sets of up to eight interacting genes and characterize 
the ‘k robustness’ (the depth of backup interactions) of k robustness’ (the depth of backup interactions) of k
each gene. We find that 74% (360) of the metabolic genes 
participate in processes that are essential to growth in a 
standard laboratory environment, compared with only 13% 
previously found to be essential using single knockouts. The 
genes’ k robustness is shown to be a solid indicator of their k robustness is shown to be a solid indicator of their k
biological buffering capacity and is correlated with both 
the genes’ environmental specificity and their evolutionary 
retention.

In laboratory conditions, about 19% of the genes in the yeast S. cere-
visiae are essentialvisiae are essentialvisiae 1; that is, their null mutation is lethal to the organ-
ism (see also the Saccharomyces Genome Database (SGD) (http://
www.yeastgenome.org)). All other genes are apparently dispensable, 
demonstrating genetic robustness2,3. Several authors3–8 have provided 
three explanations accounting for this observed dispensability: (i) a 
gene’s function might be buffered by duplication or overlap at either 
the sequence or the molecular function levels (also termed degeneracy, 
genetic buffering5 or, often, redundancy3,9); (ii) a gene’s function might 
be buffered by an alternative biochemical pathway (functional comple-
mentation5); or (iii) a gene might be involved in processes that are 
required only under untested environmental conditions4. The first two 
mechanisms involve functional backup interactions between genes, the 
main subject of this study.

Gene essentiality and pairwise genetic interactions have been previ-
ously investigated using large-scale single and double knockout studies 
in yeast1,10–14. Here we go beyond gene essentiality and chart the archi-
tecture of robustness against gene knockouts of the yeast metabolic 

network, employing large-scale deep multiple knockouts in an in silico
model. Such knockouts have been used experimentally to study small-
scale networks7, but large-scale multiple knockouts11 are still scarce 
owing to the high combinatorial number of experiments involved. Two 
recent papers performed all double knockouts of yeast and the bacte-
rium H. pylori metabolic genes using in silico models12,13.

Multiple knockouts, essential sets and k robustnessk robustnessk
Extending the common notion of essentiality to the realm of genetic 
robustness via multiple knockouts, we define a gene as ‘contributing’ 
to the organism’s viability and growth if it is a member of an ‘essential 
gene set’. This denotes a set of genes whose combined knockout results 
in a mutant strain with very slow or no growth (relative to the wild-
type growth rate) but where the growth rate of a mutant missing only 
a subgroup of these genes remains high. Hence, the functioning of any 
one gene in an essential set buffers against the concomitant knockout 
of all other genes in the set, providing a basic functional backup and 
indicating the existence of pairwise backup interactions (also termed 
synthetic11, aggravating12 or synergistic14 interactions). We denote the 
system as ‘k robust’ to a specific gene knockout according to the size k robust’ to a specific gene knockout according to the size k k
of the smallest essential gene set that includes the knocked-out gene 
(its interaction depth). Thus, the system is 1-robust to knockout of 
an essential gene, 2-robust to knockout of any nonessential gene that 
is involved in a synthetic lethal pair11, and so on. This definition of k
robustness subsumes the set of essential genes, creating a higher-level 
dichotomy of contributing versus noncontributing genes. It extends 
the classical notion of an essential contribution of a gene to its poten-
tial contribution in face of possibly larger genetic or environmental 
perturbations. We further denote as ‘coessential’ genes that are in a 
common essential set. Our definition of essential gene sets is similar 
to that of minimal cut sets introduced in ref. 15, but the calculation in 
that work relies on the use of elementary modes16, currently feasible 
only for small-scale networks.

We study genetic robustness using a previously reconstructed17–19

flux balance analysis20 (FBA) model of the metabolic network of the 
yeast, incorporating 708 genes, 1,175 reactions and 584 metabolites. 
Our investigation is focused on those 484 model genes with known 
ORFs whose product enzyme is not on a dead-end pathway in the 
model4 (Supplementary Table 1 online). (The analysis excludes ficti-
tious genes, which catalyze reactions that are known or assumed to be 
available to the yeast according to biochemical literature but that are 
not annotated to any known ORF.) The FBA analysis takes into con-
sideration the structure, stoichiometry and basic thermodynamics of 
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the metabolic network, applying mass-balance constraints to predict 
phenotypes and other properties with general prediction accuracy of 
70–90% (ref. 20) and single-deletion mutant viability with 89% accu-
racy (Supplementary Note). Our analysis is performed in two stages: 
in the first, we exhaustively search through the space of all possible 
combinations of concomitant, multiple knockouts of genes, up to the 
concomitant knockout of four genes. We record the essential sets found 
and list the contributing genes with their k robustness levels. Because k robustness levels. Because k
further exhaustive search is currently computationally infeasible, the 
second stage uses a stochastic sampling method to identify genes with 
k robustness levels >4 (see Methods). The FBA model estimates the 
organism’s potential to grow under various conditions, though in real-
ity the organism may not use all this potential owing to additional 
non-modeled constraints (for example, non-optimal gene expression 
resulting from regulatory constraints). Therefore, the k robustness we k robustness we k
record is actually an approximation of the true, experimental value, 
reflecting the backup potential provided by the network structure and 
stoichiometry. Finally, essential sets are marked as based on functional 
duplication if all genes in the set catalyze the same essential reaction, as 
alternative pathways if there are no isoenzymes in the set or as a mixed 
mechanism otherwise. Each gene is tagged with one or both types of 
functional backup.

Coessential genes and their corroboration
Our study focused on a standard synthetic rich medium17 (see 
Methods). Using an exhaustive multiple knockout search, we found 
48 essential genes, 14 essential pairs, 17 triplets and 39 essential qua-
druples, overall involving 159 contributing genes. The gene knockout 
sampling method identified an additional 173 contributing genes with 
k robustness levels >4, the vast majority of which are 10-robust or less. k robustness levels >4, the vast majority of which are 10-robust or less. k
Inspection of the list of reactions in the metabolic network identified 
an additional 28 contributing genes that catalyze essential reactions 
but that are backed up by at least four duplicated isoenzymes. We 
repeated the same procedure using a glucose minimal medium for 
comparison. The essential sets found are detailed in Supplementary
Table 1.

Validating these model predictions is not straightforward, as almost 
no experimental multiple knockouts of the yeast’s metabolic genes are 
available. Considering the very few relevant known synthetic lethal 
interactions, FBA predictions of coessential genes (pairs that are in 

the same set; see Supplementary Table 1) achieve good recall, given 
our use of sampling (59%; Supplementary Note). To further test the 
model’s accuracy, one can measure the percentage of experimentally 
essential genes in each k robustness level. Ideally, one would expect 
that all 1-robust genes, but no other genes, be experimentally iden-
tified as essential if the model were completely accurate. The true 
picture (Fig. 1) depicts a rapid decrease in the fraction of essential 
genes with rising k robustness levels, showing that k robustness is 
indeed a clear indicator of the biological buffering capacity. To further 
corroborate the validity of the pairwise interactions predicted by the 
model between members of the same essential set, we followed the 
procedures laid out in ref. 11 to search for other possible biological 
pairwise relations that correspond with these interactions. The list of 
predicted interacting gene pairs is indeed significantly enriched with 
many experimentally measured pairwise characteristics (Table 1). 
Although this enrichment is expected for isoenzyme pairs, it remains 
valid even when considering only non-isoenzyme coessential genes. In 
addition, we find that the expression patterns of coessential pairs are 

Table 1  The overlap between several gene or protein pair characteristics (C) and the ‘coessentiality’ property (B)

Characteristic C B only C only B&C Neither P valueP valueP
Large-scale 

experimental P valueP valueP
P value for P value for P

non-isoenzymes

Sequence homology 2,837 386 328 113,335 5 × 10–314 4 × 10–22 0.002

Similar biological process 2,751 3,249 431 110,455 8 × 10–147 <2 × 10–322 7 × 10–22

Same biological process 2,877 1,511 305 112,193 2 × 10–145 5 × 10–296 6 × 10–7

Same subcellular localization 2,188 24,210 994 89,494 4 × 10–38 2 × 10–70 3 × 10–7

Common regulatory motifs 1,439 8,072 379 51,535 3 × 10–17 - 2 × 10–6

Same MIPS mutant phenotype 3,155 129 27 113,575 2 × 10–14 9 × 10–316 5 × 10–11

Physical interaction (DIP) 3,148 59 17 113,662 2 × 10–11 - 0.11

Physical interaction: same MIPS 
complex (mostly TAP, HMS-PCI)

3,100 1,131 65 112,590 2 × 10–7 4 × 10–6 0.01

Correlated expression, (Rosetta) 
CC > 0.7

3,048 131 6 112,255 0.16 0.79 0.64

Correlated expression, (Rosetta) 
CC < –0.7

3,054 23 0 112,363 1 0.37 1

Table entries indicate the number of pairs that have the property or combination of properties indicated, and P values are from Fisher’s exact test. The next-to-last P values are from Fisher’s exact test. The next-to-last P
column indicates, for comparison, the results obtained by ref. 11 measuring the overlap between experimental genetic interactions and the corresponding character-
istics. The last column lists corresponding P values obtained by considering the 2,866 (90%) non-isoenzyme coessential gene pairs alone.P values obtained by considering the 2,866 (90%) non-isoenzyme coessential gene pairs alone.P CC: correlation coefficient. 
The data sets are detailed in Methods.
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Figure 1  Fraction of essential genes in each k robustness level. Essentiality 
is determined according to large-scale experiments (see the SGD). The 
straight line is the linear regression fit. Data is presented for k ≤ 6, as the 
number of genes in higher levels is very small.
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more coherent and similar than that of random pairs (Supplementary
Note). Finally, k robustness values (either for all genes or only for 
non-isoenzyme pairs) are correlated with several other properties of 
genes, including evolutionary conservation, environmental specific-
ity and expression levels (Supplementary Table 2 online), showing 
that k robustness indeed has a biological meaning, related to other 
genetic properties. Nonetheless, this does not suggest any causal rela-
tion between genetic robustness, or k robustness, and other genetic 
qualities, a subject that is still a contentious issue2,21–24.

The nature of the genetic interactions depicted in essential sets is 
demonstrated in the following example concerning the pentose phos-
phate pathway: ribose 5-phosphate is a critical precursor in the syn-
thesis of nucleic acids, which are needed in high amounts in growing 
cells, and is produced by the pentose phosphate pathway using either 
the oxidative or nonoxidative branches25. Therefore, it is not surprising 
that the disruption of both branches is predicted to be lethal, giving 
rise to several essential sets, such as the combination of glucose 6-phos-
phate dehydrogenase (ZWF1) and the two transketolases (TKL1, TKL2), 
a combination that previously has been found experimentally26 (see 
additional examples in the Supplementary Note and Supplementary
Fig. 1 online).

The architecture of metabolic robustness
We analyzed these results on a large scale (Fig. 2 shows a histogram of the 
genes’ robustness levels). The contributing genes total 74% (360) of the 
tested genes, compared with only 10% of these genes that are identified 
in silico as essential using traditional single knockouts17 (and 13% previ-
ously found in vivo1; see also the SGD). This indicates that a large major-
ity of the genes are involved in processes already required in the standard 
laboratory rich environment, even though the individual genes are not 
essential. Using a glucose minimal medium, a slightly smaller set of 72% 
of the genes is uncovered at markedly lower k robustness levels. These 
differences arise mainly from the more extensive activity of membrane 
transporters and catabolic pathways in the rich medium, increasing the 
number of contributing genes and the overall k robustness (as synthesis 
and transport buffer each other). These media-dependent changes are 
described in more detail in the Supplementary Note.

Backups arise more often from alternative pathways than from 
functional gene duplication (Fig. 2), the former being solely respon-
sible for 45% of the backed up genes and partially responsible for 33% 

more. Furthermore, considering all coessential gene pairs, only 10% 
involve genes coding for duplicated isoenzymes. Alternative pathways 
are particularly dominant in genes with high k robustness levels, sug-
gesting that their role in genetic robustness might be underestimated 
when the investigation is limited to shallow knockout depths. Another 
notable quality of backup interactions is transitivity, or the formation 
of dense neighborhoods11: we find that the probability of a backup 
interaction between two genes is significantly higher (P < 10−323) if 
both genes are backed up by a common third gene (a fivefold increase, 
from 2.7% in general to 14% among genes with a common neighbor). 
In agreement with ref. 7, we find that the number of essential sets 
per gene is usually small, averaging 8 sets or 22 pairwise interactions 
per gene, although a few genes are involved in many interactions 
(Supplementary Fig. 2 online).

We used the Gene Ontology (GO)-Slim biological process annota-
tions from the SGD (http://www.yeastgenome.org; November 2005) 
to test if any biological process category is significantly enriched or 
depleted with backed-up genes, as portrayed in Figure 3 (see Methods). 
Indeed, two main metabolic functions, amino acid metabolism and 
generation of precursor metabolites and energy are highly backed up 
(P = 3 × 10−11 and P = 0.01, respectively). In contrast, genes function-
ing in lipid metabolism contain significantly more essential genes 
than expected by chance (P = 1 × 10−10), comprising a particularly 
non-robust functional category. The backup interactions between the 
functional categories in the metabolic network are shown in Figure 4. 
The functional categories of precursors and energy generation, carbo-
hydrate metabolism, amino acid metabolism and transport processes 
have notable interfunctional backups (which may be quite intricate 
when examined in detail; see examples in Supplementary Note). 
These and other categories also have significantly elevated levels of 
intrafunctional backup interactions, although overall, interfunctional 
backup interactions are abundant. This is evident also with the higher 
resolution possible by using the full GO annotation: defining two 
GO terms as similar if they are annotated with significantly over-
lapping gene sets11,27, we find that only 18% of backup interactions 
are between genes annotated with similar GO terms, comparable to 
the 27% found experimentally in ref. 11 and differing from previous 
observations in small-scale systems7 (see also Supplementary Fig. 3
and Supplementary Methods online). It should be noted that 
the qualitative similarities between the findings in ref. 11 and our 
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Figure 2  k robustness gene histograms 
and the distribution of backup 
mechanisms for contributing genes at 
different levels of k robustness, on rich 
(a–d) and minimal media (e–h). Backed up 
genes are black if backed up by alternative 
pathways (a,e), light gray if backed up by 
duplication (c,g) and dark gray if backed 
by both mechanisms (b,f). d and h present 
the total counts, with the leftmost column 
in each panel depicting essential genes 
with no backups. Genes with robustness 
levels 5 and up are found using stochastic 
search, and their robustness level 
might be overestimated (Methods). The 
rightmost column in each pane counts 
contributing genes whose robustness 
level remains undetermined or is >10, 
including 17 genes encoding various 
hexose transporters comprising a single 
duplicated-function essential set.
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findings also include the existence of dense neighborhoods and arise 
even though the studies involve different subsets of the yeast genome 
and use in silico versus in vivo knockouts of different depths.

Robustness, dispensability and evolution
Two previous FBA-based studies4,28 of the mechanisms for dispens-
ability reported that the majority of dispensable metabolic genes are 
specific to certain environmental conditions, concluding that environ-
mental specificity is the dominant explanation behind dispensability.
They further showed that gene duplication is the second common 
explanation. We find that 91% of the condition-specific genes identi-
fied in ref. 4 are contributing genes (as defined above) already in the 
standard rich environment. There is a significant correlation between 
the k robustness of genes and their environmental specificity, measured 
as the number of environments where the gene is dispensable (R =
0.39, P = 9 × 10−11, N = 252 (B. Papp, personal communication; Fig. 5a
and Supplementary Note)). That is, genes with many backups tend 
to catalyze reactions that are essential in only a few specific environ-
ments. This may suggest that the availability of backups allows for the 
functional divergence and specification of genes with high k robustness 
to specific environments during evolution. It has been reported28 that 
redundancy (duplication) is an important cause of metabolic network 
robustness to single-gene deletions during growth on glucose (mini-
mal medium). This conclusion can also be seen in our results (Fig. 2). 
However, when extending the analysis to multiple gene knockouts, we 
find that at higher depths, and especially in the more complex rich 
medium, the role of alternative pathways towards genetic robustness 
is more prominent than that of duplication.

To examine the extent to which the k robustness of genes may actu-
ally confer them with a functional backup from an evolutionary perspec-
tive, we compared the genes’ k robustness with the propensity for gene 
loss21,22 (PGL data courtesy of Y. Wolf, personal communication; Fig. 5b), 
which is an (inverse) measure of the evolutionary conservation of genes. 
The resulting significant correlation (R = 0.23, P = 1 × 10−4, N = 278) shows 

that genes with high k robustness are less conserved and hence testifies 
that they are indeed functionally buffered, permitting their divergence. 
This conclusion is further strengthened by the finding that the PGL scores 
of coessential genes are significantly more similar, or coherent, than those 
of random gene pairs. This is unsurprising for homologous or isoenzyme 
pairs but is true even when disregarding them: the average absolute dif-
ference in PGL scores of non-isoenzyme coessential genes is 27% lower 
than the average for all gene pairs (P = 3 × 10−66, Wilcoxon’s rank-sum 
test; similar results hold considering nonhomologous coessential genes). 
It seems that common evolutionary forces were imposed on backup gene 
pairs to channel them in similar evolutionary paths. Although still con-
troversial, previous studies have found that environmental specificity and 
gene expression are both correlated with evolutionary conservation of 
genes4,21–24. As both are also correlated with k robustness (Supplementary
Table 2), we verified that k robustness and PGL are correlated even when 
statistically controlling for these variables (Pearson’s partial R = 0.22, P =
5 × 10−4, N = 233; Supplementary Note).

It is important to note that genetic robustness did not necessar-
ily evolve because it was favored by natural selection2. This explana-
tion, termed ‘adaptive’ robustness, claims that for well-adapted traits, 
mutations derive a non-optimal phenotype and hence decrease fitness. 
However, alternative ‘intrinsic’ theories—often raised in the context of 
dominancy but relevant to genetic robustness in general—view robust-
ness as a correlated side effect of the evolution of other properties, 
such as higher metabolic efficiency4such as higher metabolic efficiency4such as higher metabolic efficiency , or even as an inherent property 
of complex, evolving systems3. An intermediate, ‘congruent’ possibility 
points to the tight coupling between genetic robustness and environ-
mental robustness (buffering of non-heritable perturbations), as many 
mechanisms allow both (for instance, buffering between transport and 
synthesis). As environmental perturbations occur at a higher frequency, 
this view posits the evolution of genetic robustness as a side effect of 
the evolution of environmental robustness29. Our findings do not con-
tradict any of these possibilities.

Our investigation leaves the contribution of 26% of the genes unde-
tected, and assuming that genes retained by evolution do fulfill some 
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Figure 3  Metabolic network robustness across different functional GO-
Slim categories on rich medium, showing for each category the proportions 
of essential genes (dark), backed up genes (light), and genes not found 
to contribute in our analysis (white). Superimposed numbers indicate 
gene counts (for clarity, only counts of 3 or more are indicated). Only 
categories annotated with at least ten genes are included. The respective 
measurements in glucose minimal medium are very similar, except that 
many more of the genes involved in amino acid and derivative metabolism 
are essential (45/110).

Figure 4  Functional backup capacity on rich medium. Vertices of the graph 
represent GO-Slim biological process categories (annotated with at least 
ten genes). Dotted edges connect categories if there are any two genes in a 
common essential set that are annotated one to each category. Dashed edges 
indicate a higher-than-average frequency of such gene pairs, whereas solid 
edges indicate a statistically significant high frequency (see Methods). Edge 
width correlates with the logarithm of the frequency. Numbers in brackets 
indicate how many genes are annotated to each functional category.
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function, they should be accounted for. First, we verified that at least 
12% of the genes are non-contributing in rich medium (see Methods). 
Second, some genes might be heavily backed up and escape detection 
because of the depth limit of our investigation, the ‘optimistic’ bias of 
the model and its inaccuracies (see Methods). Last, some tested genes 
might be backed up by model genes without a known ORF, which were 
excluded from the current study. Even so, the contributions of almost 
three-quarters of yeast metabolic genes are detected, uncovering the 
underlying architecture of robustness of yeast metabolism.

METHODS
The model. We use the constraint-based model of ref. 18, focusing on the 484 
genes with known ORFs that are not on a dead-end pathway4genes with known ORFs that are not on a dead-end pathway4genes with known ORFs that are not on a dead-end pathway  (that is, at least 
one of their catalyzed reactions’ products is a substrate for another reaction that 
is itself not on a dead-end and vice versa). Growth on both rich and minimal 
media was simulated under aerobic conditions. The minimal medium included 
glucose, oxygen, ammonia, phosphate, sulfate and potassium. The rich medium 
included, in addition, 20 amino acids, purines and pyrimidines17.

The FBA finds an upper bound on the obtainable growth rate of the organ-
ism and hence has an optimistic bias, falsely predicting viability more often than 
falsely predicting lethality (80% of the errors are false positives17). Hence, rather 
than falsely attributing contribution, we are more likely to miss some contribut-
ing genes and detect the contributing genes at k robustness levels higher than 

their real level.

Search for backed up genes and essential sets. We performed an exhaustive 
search, which included all gene sets of up to four genes. Each set marked essen-
tial had a lethal knockout phenotype (growth rate <20% of the wild-type rate) 
with all subset knockout mutants viable (growth rate >80%; see Supplementary
Methods and Supplementary Fig. 4). If all genes in an essential set were iso-
enzymes catalyzing the same essential reaction, their backup was attributed to 
duplication. Alternatively, if no isoenzymes were found in an essential set, backup 
was attributed to alternative pathways. When both isoenzymes and other genes 
were found in a common essential set, the genes encoding the isoenzymes were 
tagged with both types of backup mechanisms, whereas the other genes were 
obviously tagged as buffered by alternative pathways solely.

The exhaustive search took a week using a cluster of ten computers. Testing all 
combinations of five knockouts would have increased the computational resources 
needed by two orders of magnitude and would have required about two years. Thus, 
we searched for genes that are more than 4-robust using stochastic sampling meth-
ods, requiring an additional 2 weeks on the computer cluster.

To stochastically test whether gene X is contributing, we repeatedly tested 
random knocked-out mutants, each missing a large number of knocked-out 
genes but leaving gene X intact. Finding such a knockout configuration that 
is itself viable but then becomes lethal when gene X is knocked out (mean-
ing that all its backups are already silenced) provides proof of X’s contribu-
tion. As the probability of finding such an event can be estimated analytically 
assuming that gene X is k robust (Supplementary Methods), one can bound 
the probability that the said gene is contributing at a given k robustness level 
by repeating this stochastic test a sufficient number of times. We calibrated 
parameters of the stochastic testing for a misdetection rate of 10−2 for 8-robust 
genes (on rich medium, or 6-robust genes on minimal medium, according 
to computational feasibility) and validated them on the sets of contributing 
genes found with the exhaustive search. This implies an extremely high detec-
tion rate for genes with robustness levels <8, a 45% misdetection probability 
of 9-robust genes, and an 85% misdetection probability of 10-robust genes. 
We were usually able to extract essential sets from the large knockout groups 
during the stochastic search (Supplementary Methods), additionally giving 
upper bounds on k robustness levels.

We have used the model to compute the maximal and minimal possible flux 
through any reaction, given that the growth rate is at least 80% of the wild-type 
growth. This computation enables us to identify reactions that always have a zero 
flux under these conditions, even after multiple knockouts, and hence identify 

genes that are noncontributing in the rich environment tested.

Experimental gene pair characteristics. We evaluated the statistical significance 
of the overlaps in Table 1 using Fisher’s exact test. The experimental data sets are 
as follows. (i) Sequence homology using BLAST E values below 10E values below 10E −4. (ii) Same or 
similar biological process GO annotation (see the SGD): genes were considered to 
have the same process annotation if they shared at least one direct biological pro-
cess. Two GO annotations were considered similar if the sets of genes annotated 
to each one (including genes annotated to descendent terms in the ontology) 
were significantly and strongly overlapping. Significance was evaluated using 
Fisher’s exact test, corrected for multiple testing by limiting the false discovery 
rate (FDR)30 to 10%. Strength of association was determined by LOD11 values 
>3. Genes were considered similarly annotated if at least one of their annotations 
(one annotation of each gene) was similar. (iii) Same subcellular localization (that 
is, sharing at least one direct cellular component GO annotation; see the SGD). 
(iv) Common regulatory motifs. Motifs are from ref. 31. Considering only genes 
that have at least one regulatory motif attached in the data, we listed all gene 
pairs that have at least one common motif. (v) Same MIPS mutant phenotype. 
This was determined according to the list of phenotypes in the MIPS database 
(http://mips.gsf.de/genre/proj/yeast/, August 2005), excluding nonspecific phe-
notype categories (categories with names including the word ‘other’, categories 
with more than 200 genes, and those at the least specific level of the hierarchy). 
(vi) Physical interaction (DIP). The protein-protein interactions, based on the 
DIP database, were taken from ref. 32 (data courtesy of R. Sharan). Only interac-
tions with a positive probability were considered. (vii) Physical interaction (MIPS 
complex). This means participation in at least one protein complex listed in MIPS 
(usually from large-scale tandem affinity purification (TAP) or high-throughput 
mass spectrometric protein complex identification (HMS-PCI) experiments). 
(viii) Correlated expression (Rosetta). This was computed among the expression 
vectors of each gene in the 300 conditions of the Rosetta compendium33 (ignoring 

missing values). Correlation coefficients >0.7 or <–0.7 were considered.

Functional qualities of essential sets. For each GO-Slim biological process cat-
egory at the SGD, we tested the number of backed up genes out of all genes anno-
tated to that category, compared with a random distribution of the contributing 
genes across categories. P values are from Fisher’s exact test, corrected for multiple P values are from Fisher’s exact test, corrected for multiple P
testing by controlling the FDR30 at 10%. Two GO terms were defined as similar if 
they had a significant overlap of annotated genes11 (after genes were annotated 
with all ancestor terms in the GO hierarchy) using the same statistical test. We 
counted the percentage of gene pairs annotated with such similar terms, out of 
all coessential gene pairs, to find that most coessential pairs are not annotated 
with similar terms. Similar results were obtained when considering the semantic 
similarity27similarity27similarity  of GO terms (Supplementary Methods). The existence of the dense 
neighborhoods’ quality was tested by considering all coessential gene pairs using 
the procedure of ref. 11 (when examining a specific pair of interacting genes, care 
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Figure 5  Environmental specificity (ES) and propensity for gene loss (PGL) 
as a function of robustness level. Means ± s.e.m. are shown for the ES (a) 
and PGL (b) measures at each k robustness level. The dashed lines are the 
least squares linear regression through the original data points. Owing to 
their small number and the uncertainty in their robustness level estimation, 
we do not consider genes with k robustness >9, although the significant 
correlations found remain valid across k robustness thresholds from 5–12. 
The correlation between k robustness and PGL goes beyond the previously 
reported correlation between essentiality and evolutionary conservation21–24, 
as it remains significant even when considering only nonessential genes 
(R = 0.26, P = 5 × 10−5, N = 235).
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was taken to exclude all other interactions arising from their common essential 
set). For pairwise backups between two GO-Slim categories, we counted the 
number of gene pairs, one from each category, and the proportion of such pairs 
that are coessential, compared with a random distribution of such coessential 
gene pairs (Fisher’s exact test, corrected for multiple testing).

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS
We thank the Tauber fund for supporting D.D. Discussions with and comments 
of A. Hirsh, A. Kaufman, O. Meshi, Y. Pilpel, T. Pupko, R. Sharan, T. Shlomi and 
I. Venger are much appreciated. Figure 4 was drawn using Pajek from http://vlado.
fmf.uni-lj.si/pub/networks/pajek/. M.K.’s work was supported by grants from the 
Israeli Science Foundation (ISF) and the Israeli Ministry of Health. E.R.’s research 
is supported by the Yishayahu Horowitz Center for Complexity Science, the Israeli 
Science Foundation (ISF), and the German-Israeli Foundation for scientific 
research and development (GIF).

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

Published online at http://www.nature.com/naturegenetics
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/

1. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Saccharomyces cerevisiae genome. Saccharomyces cerevisiae Nature
418, 387–391 (2002).

2. De Visser, J.A. et al. Perspective: evolution and detection of genetic robustness. 
Evolution Int. J. Org. Evolution 57, 1959–1972 (2003).

3. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).
4. Papp, B., Pál, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution 

of enzyme dispensability in yeast. Nature 429, 661–664 (2004).
5. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J. & Doyle, J. Robustness of cellular func-

tions. Cell 118, 675–685 (2004).
6. Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. 

Nature 421, 63–66 (2003).
7. Hartman, J.L., IV, Garvik, B. & Hartwell, L. Principles for the buffering of genetic 

variation. Science 291, 1001–1004 (2001).
8. Wagner, A. Robustness against mutations in genetic networks of yeast. Nat. Genet.

24, 355–361 (2000).
9. Nowak, M.A., Boerlijst, M.C., Cooke, J. & Maynard Smith, J. Evolution of genetic 

redundancy. Nature 388, 167–171 (1997).
10. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene S. cerevisiae genome by gene S. cerevisiae

deletion and parallel analysis. Science 285, 901–906 (1999).
11. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science

303, 808–813 (2004).
12. Segrè, D., DeLuna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast 

metabolism. Nat. Genet. 37, 77–83 (2004).

13. Thiele, I., Vo, T.D., Price, N.D. & Palsson, B.Ø. An expanded metabolic reconstruction 
of Helicobacter pylori (iIT341 GSM/GPR): an Helicobacter pylori (iIT341 GSM/GPR): an Helicobacter pylori in silico genome-scale characterization 
of single and double deletion mutants. J. Bacteriol. 187, 5818–5830 (2005).

14. Elena, S.F. & Lenski, R.E. Test of synergistic interactions among deleterious muta-
tions in bacteria. Nature 390, 395–398 (1997).

15. Klamt, S. & Gilles, E.D. Minimal cut sets in biochemical reaction networks. 
Bioinformatics 20, 226–234 (2004).

16. Schuster, S., Fell, D. & Dandekar, T. A general definition of metabolic pathways 
useful for systematic organization and analysis of complex metabolic networks. Nat. 
Biotechnol. 18, 326–332 (2000).

17. Förster, J., Famili, I., Palsson, B.Ø. & Nielsen, J. Large-scale evaluation of in silico
gene deletions in Saccharomyces cerevisiae. OMICS 7, 193–202 (2003).

18. Förster, J., Famili, I., Fu, P., Palsson, B.Ø. & Nielsen, J. Genome-scale reconstruc-
tion of the Saccharomyces cerevisiae metabolic network. Saccharomyces cerevisiae metabolic network. Saccharomyces cerevisiae Genome Res. 13, 244–253 
(2003).

19. Famili, I., Förster, J., Nielsen, J. & Palsson, B.Ø. Saccharomyces cerevisiae
phenotypes can be predicted using constraint-based analysis of a genome-scale 
reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134–13139 
(2003).

20. Kauffman, K.J., Prakash, P. & Edwards, J.S. Advances in flux balance analysis. Curr. 
Opin. Biotechnol. 14, 491–496 (2003).

21. Krylov, D.M., Wolf, Y.I., Rogozin, I.B. & Koonin, E.V. Gene loss, protein sequence 
divergence, gene dispensability, expression level, and interactivity are correlated in 
eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).

22. Wolf, Y.I., Carmel, L. & Koonin, E.V. Unifying measures of gene function and evolu-
tion. Proc. Biol. Sci. 273, 1507–1515 (2006).

23. Hirsh, A.E. & Fraser, H.B. Protein dispensability and rate of evolution. Nature 411, 
1046–1049 (2001).

24. Papp, B., Pál, C. & Hurst, L.D. Genomic function (communication arising): rate of 
evolution and gene dispensability. Nature 421, 496–497 (2003).

25. Nelson, D.L. & Cox, M.M. Lehninger Principles of Biochemistry 3Lehninger Principles of Biochemistry 3Lehninger Principles of Biochemistry rd edn. (Worth 
Publishers, New York, 2000).

26. Schaaff-Gerstenschläger, I., Mannhaupt, G., Vetter, I., Zimmermann, F.K. & 
Feldmann, H. TKL2, a second transketolase gene of Saccharomyces cerevisiae – clon-Saccharomyces cerevisiae – clon-Saccharomyces cerevisiae
ing, sequence and deletion analysis of the gene. Eur. J. Biochem. 217, 487–492 
(1993).

27. Lord, P.W., Stevens, R., Brass, A. & Goble, C.A. Investigating semantic similarity 
measures across the Gene Ontology: the relationship between sequence and annota-
tion. Bioinformatics 19, 1275–1283 (2003).

28. Blank, L.M., Kuepfer, L. & Sauer, U. Large-scale 13C-flux analysis reveals mechanistic 
principles of metabolic network robustness to null mutations in yeast. Genome Biol.
6, R49 (2005).

29. Meiklejohn, C.D. & Hartl, D.L. A single mode of canalization. Trends Ecol. Evol. 17, 
468–473 (2002).

30. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

31. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature
431, 99–104 (2004).

32. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. 
Natl. Acad. Sci. USA 102, 1974–1979 (2005).

33. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. 
Cell 102, 109–126 (2000).

©
20

06
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eg

en
et

ic
s


